
32 INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND APPLIED MATHEMATICS, VOL. 3, NO. 1, FEBRUARY 2017

Object Oriented Design of Software Tool for Finite
Abstractions of Max-Plus-Linear Systems using

Unified Modeling Language
Muhammadun, Dieky Adzkiya and Imam Mukhlash

Abstract—Max-Plus-Linear (MPL) systems are a class of
discrete-event systems with a continuous state space characteriz-
ing the timing of the underlying sequential discrete events. There
is a formal approach to analyze these systems based on finite
abstractions. The abstraction algorithms have been in MATLAB
using list data structure and in JAVA using tree data structure.
The MATLAB implementation requires long computational time,
whereas the JAVA one requires larger memory allocation. In this
work, we discuss an object oriented design in C++ using tree data
structure without recursive functions in the hope of improving
the results obtained by the two previous implementations.

Index Terms—Finite abstractions, max-plus-linear systems,
object oriented design, unified modeling language.

I. INTRODUCTION

MAX-PLUS-LINEAR (MPL) systems are a class of
discrete-event dynamic systems [1], [2] with a con-

tinuous state space characterizing the time of occurrence of
the underlying sequential discrete events. MPL systems can
be used to describe the timing synchronization between inter-
leaved processes, under the assumption that timing events are
linearly dependent (within the max-plus algebra) on previous
event occurrences. Such systems are employed in the analysis
and scheduling of infrastructure networks, such as communi-
cation and railway systems [2], production and manufacturing
lines [3], [4], or biological systems [5]. They cannot model
concurrency and are related to a subclass of Timed Petri Nets,
namely Timed-Event Graphs [1].

Classical dynamical analysis of MPL systems leverages
their algebraic [6] or geometric features [7]. It allows in-
vestigating model properties such as its transient behavior,
its periodic regimes, or its ultimate dynamical behavior [8].
Recently, there is a formal approach that has explored a
new, alternative approach to analysis that is based on finite-
state abstractions [9] of autonomous and nonautonomous MPL
systems. The proposed abstraction procedures generates a
finite-state Transition System (TS) in a finite number of steps.
There is a formal relationship between the concrete model
and its abstraction. More precisely, [9] argue that in general
the LTS abstraction simulates the original MPL model, and
furthermore they provide sufficient conditions to establish a

Manuscript received January 27, 2017; accepted February 28, 2017.
The authors are with the Department of Mathematics, Institut

Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia.
Email: muhammadun14@mhs.matematika.its.ac.id,
{dieky,imamm}@matematika.its.ac.id

bisimulation relation between abstract and concrete models
[10].

The abstraction algorithms over MPL systems have been
implemented in MATLAB using list data structure [11]. In
this implementation, the process to compute transition requires
a long computation time. Then the implementation has been
improved by using tree data structure in JAVA language [12].
This implementation successfully accelerates the computa-
tional time but requires a larger memory allocation because
its functions are recursive. In this work, we will discuss
the object oriented design in C++ using tree data structure
without recursive functions in the hope of improving the
results obtained by the previous two implementations.

II. MODELS AND PRELIMINARIES

A. Max-Plus-Linear Systems

An (autonomous) Max-Plus-Linear (MPL) system [1, Rem.
2.75] is defined as:

x(k) = A⊗ x(k − 1) (1)

where A ∈ Rn×n
ε , x(k−1) = [x1(k−1) . . . xn(k−1)]T ∈ Rn

for k ∈ N. The detailed discussion on MPL systems can be
seen in [1], [2]. The meaning of k does not represent the
“time”, as in the usual discrete-time systems. MPL systems
are a discrete-event system. More precisely, the parameter k
represents an event counter. The state x(k) represents the time
of k-th occurrence of state events.

B. Piecewise Affine Systems

An autonomous MPL system characterized by row-finite
state matrix A ∈ Rn×n

ε can be expressed as a PWA system in
the event domain [13, Sec. 3]. The regions and the correspond-
ing affine dynamics can be constructed from coefficients g =
(g1, . . . , gn) ∈ {1, . . . , n}n [9], [12]. For each i ∈ {1, . . . , n},
the coefficient gi represents the maximal term in the i-th state
equation xi(k) = max{A(i, 1) + x1, . . . , A(i, n) + xn}, that
is A(i, j) + xj ≤ A(i, gi) + xgi for all j ∈ {1, . . . , n}.

The set of states corresponding to coefficients g is denoted
by Rg , which can be expressed explicitly as follows

Rg =

n⋂
i=1

n⋂
j=1

{x ∈ Rn : A(i, j) + xj ≤ A(i, gi) + xgi}.

The affine dynamics that is active in the above region is

xi(k) = xgi(k − 1) +A(i, gi), i ∈ {1, . . . , n}. (2)

MUHAMMADUN et al.: DESIGN OF SOFTWARE TOOL FOR FINITE ABSTRACTIONS OF MPL SYSTEMS USING UNIFIED MODELING LANGUAGE 33

C. Difference Bound Matrices

In this section, we introduce the notion of Difference Bound
Matrices (DBM). DBM will be used in the finite abstraction
of MPL systems to represent the (partitioning) region, the
dynamics and also the set of states satisfying each atomic
proposition.

Definition 1 ([14, Sec. 4.1]): A DBM in Rn is the inter-
section of finitely many sets defined as xj − xi ./i,j αi,j

where ./i,j∈ {<,≤} represents a strict and nonstrict inequal-
ity sign, αi,j ∈ R ∪ {+∞} denotes the upper bound, for
i, j ∈ {0, . . . , n} and value of the special variable x0 is always
equal to 0. The sets are subsets of Rn that are characterized
by the values of variables x1, . . . , xn.

There are some operations defined over DBM such as
the intersection of two DBM, the complement of a DBM,
the canonical-form representation of a DBM, the orthogonal
projection of a DBM, the emptiness checking on a DBM,
the image of a DBM w.r.t. affine dynamics, and the inverse
image of a DBM w.r.t. affine dynamics. The interested reader
is referred to [12, Sec. 2.3] for more detailed explanation.

D. Finite Abstractions of Transition Systems

1) Transition Systems: A transition system [10, Def. 2.1]
TS is characterized by a quintuple (S,−→, I, AP,L) where
• S is a set of states,
• −→⊆ S × S is a transition relation,
• I ⊆ S is a set of initial states,
• AP is a set of atomic propositions, and
• L : S → 2AP is a labelling function.

TS is called finite if the cardinality of S and AP is finite.
2) Linear Temporal Logic: Linear Temporal Logic [10,

Def. 5.1] (LTL) formulae over the set AP of atomic proposi-
tions are formed according to the following grammar:

ϕ ::= true | a | ϕ1 ∧ ϕ2 | ¬ϕ | ©ϕ | ϕ1 ∪ ϕ2

The semantics of LTL formulae can be seen in [10].
3) Abstractions: Abstraction is a fundamental concept that

enables the analysis of large [10, Ex. 7.53] or even infinite
[10, Ex. 7.54] transition systems. An abstraction is identified
by a set of abstract states Ŝ; an abstraction function f , that
associates to each (concrete) state s of the transition system
TS the abstract state f(s) that represents it; and a set AP of
atomic propositions labelling the concrete and abstract states.
Abstractions differ in the choice of the set Ŝ of abstract states,
the abstraction function f , and the relevant propositions AP .

Typically an abstract transition system simulates the corre-
sponding concrete transition system. Simulation relations are
used as a basis for abstraction techniques, where the idea
is to replace the model to be verified by a smaller abstract
model and to verify the latter instead of the original one.
Simulation relations are preorders on the state space requiring
that whenever s′ simulates s, state s′ can mimic all stepwise
behavior of s, but the reverse is not guaranteed. The formal
definition of the simulation order is given below.

Definition 2 (Simulation Order [10]): Let TSi =
(Si, Acti,−→i, Ii, AP, Li), i ∈ {1, 2} be transition systems

over AP . A simulation for (TS1, TS2) is a binary relation
R ⊆ S1 × S2 such that

1) for each s1 ∈ I1 there exists s2 ∈ I2 such that (s1, s2) ∈
R

2) for all (s1, s2) ∈ R it holds that
a) L1(s1) = L2(s2)
b) if s′1 ∈ Post(s1) then there exists s′2 ∈ Post(s2)

with (s′1, s
′
2) ∈ R

Transition system TS1 is simulated by TS2 (or, equiva-
lently, TS2 simulates TS1) if there exists a simulation R for
(TS1, TS2).

We briefly outline the essential ideas of abstractions that
are obtained by aggregating disjoint sets of concrete states
into single abstract states. Abstraction functions map concrete
states onto abstract ones, such that abstract states are associ-
ated with equally labeled concrete states only.

Proposition 1 ([10]): Let TS = (S,Act,−→, I, AP,L) be
a (concrete) transition system, Ŝ a set of (abstract) states, and
f : S → Ŝ an abstraction function. Then TSf simulates TS.

Proposition 2 ([10]): Let TS2 simulates TS1, assume TS1

does not have terminal states, let ϕ be a linear-time property.
If TS2 satises ϕ, then TS1 also satises ϕ.

E. Unified Modeling Language
The Unified Modeling Language (UML) is a general-

purpose, developmental, modeling language in the field of
software engineering, that is intended to provide a standard
way to visualize the design of a system.

III. MAIN RESULTS

A. Auxiliary Classes

Fig. 1. Class diagram for ListEl

1) ListEl: This class (cf. Fig. 1) is used to represent an
element in a singly linked list. Member variables are as
follows:

1) elem is a variable of type node.
2) next is a pointer to ListEl. If this is not the last

element, this variable points to the next element in the
list. If this is the last element in the list, this variable
does not point to anything.

Member functions are as follows:
1) ListEl() is a constructor without any argument. This

function does not do anything.
2) ListEl(n) is a constructor with one argument of type

node. In this function, value of the argument is stored in
member variable elem and pointer next is initialized
to null.

3) ˜ListEl() is a destructor. This function does not do
anything.

34 INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND APPLIED MATHEMATICS, VOL. 3, NO. 1, FEBRUARY 2017

Fig. 2. Class diagram for List

2) List: This class (cf. Fig. 2) is an implementation of
singly linked list, where each element is of type ListEl. The
list stores all leaves of the abstraction tree. Member variables
are as follows:

1) first is a pointer to ListEl. If the list is not empty,
this variable points to the first element in the list. If the
list is empty, this variable does not point to anything.

2) last is a pointer to ListEl. If the list is not empty,
this variable points to the last element in the list. If the
list is empty, this variable does not point to anything.

Member functions are as follows:
1) List() is a constructor without any argument. In this

function, both member variables are initialized to null.
This means that they do not point to anything.

2) ˜List() is a destructor. This function does not do
anything.

3) pushBack(n) is a function with one argument of type
node. In this function, the argument is inserted to end
of the list.

Fig. 3. Class diagram for ListStateMatrixElemEl

3) ListStateMatrixElemEl: This class ((cf. Fig. 3)) is used
to represent an element in a singly linked list. Member
variables are as follows:

1) elem is a variable of type StateMatrixElem.
2) next is a pointer to ListStateMatrixElemEl. If

this is not the last element, this variable points to the
next element in the list. If this is the last element in the
list, this variable does not point to anything.

Member functions are as follows:
1) ListStateMatrixElemEl() is a constructor with-

out any argument. This function does not do anything.
2) ListStateMatrixElemEl(sme) is a constructor

with one argument of type StateMatrixElem. In
this function, value of the argument is stored in member
variable elem and pointer next is initialized to null.

3) ˜ListStateMatrixElemEl() is a destructor. This
function does not do anything.

4) ListStateMatrixElem: This class (cf. Fig. 4) is an im-
plementation of singly linked list, where each element is of

Fig. 4. Class diagram for ListStateMatrixElem

type ListStateMatrixElemEl. This linked list is used
to store entries of the state matrix. We use a linked list, rather
than an array, because we do not know size of the state matrix
a-priori. Member variables are as follows:

1) first is a pointer to ListStateMatrixElemEl.
If the list is not empty, this variable points to the first
element in the list. If the list is empty, this variable does
not point to anything.

2) last is a pointer to ListStateMatrixElemEl. If
the list is not empty, this variable points to the last
element in the list. If the list is empty, this variable does
not point to anything.

Member functions are as follows:
1) ListStateMatrixElem() is a constructor without

any argument. In this function, both member variables
are initialized to null. This means that they do not point
to anything.

2) ˜ListStateMatrixElem() is a destructor. This
function does not do anything.

3) pushBack(sme) is a function with one argument of
type StateMatrixElem. In this function, the argu-
ment is inserted to end of the list.

Fig. 5. Class diagram for ListStrEl

5) ListStrEl: This class (cf. Fig. 5) is used to represent
an element in a singly linked list. Member variables are as
follows:

1) elem is a variable of type string.
2) next is a pointer to ListStrEl. If this is not the last

element, this variable points to the next element in the
list. If this is the last element in the list, this variable
does not point to anything.

Member functions are as follows:
1) ListStrEl() is a constructor without any argument.

This function does not do anything.
2) ListStrEl(strElem) is a constructor with one

argument of type string. In this function, value of
the argument is stored in member variable elem and
pointer next is initialized to null.

3) ˜ListStrEl() is a destructor. This function does not
do anything.

MUHAMMADUN et al.: DESIGN OF SOFTWARE TOOL FOR FINITE ABSTRACTIONS OF MPL SYSTEMS USING UNIFIED MODELING LANGUAGE 35

Fig. 6. Class diagram for ListStr

6) ListStr: This class (cf. Fig. 6) is an implementation of
singly linked list, where each element is of type ListStrEl.
This list stores the specifications that are going to be checked
against the model. We use a linked list, rather than an array,
because we do not know a-priori the number of specifications.
Member variables are as follows:

1) first is a pointer to ListStrEl. If the list is not
empty, this variable points to the first element in the
list. If the list is empty, this variable does not point to
anything.

2) last is a pointer to ListStrEl. If the list is not
empty, this variable points to the last element in the
list. If the list is empty, this variable does not point to
anything.

Member functions are as follows:

1) ListStr() is a constructor without any argument. In
this function, both member variables are initialized to
null. This means that they do not point to anything.

2) ˜ListStr() is a destructor. This function does not do
anything.

3) pushBack(strElem) is a function with one argu-
ment of type string. In this function, the argument is
inserted to end of the list.

Fig. 7. Class diagram for StateMatrixElem

7) StateMatrixElem: This class (cf. Fig. 7) represents an
element of the state matrix of an MPL system, whose value can
be either a finite integer or minus infinity. Member variables
are as follows:

1) isMinInfinite is a Boolean variable that represents
whether the element is finite or not. If the value of
isMinInfinite is true, then the element is minus
infinity and the value stored in val is ignored. However
if the value of isMinInfinite is false, then the
element equals the value of val.

2) val is an integer variable which stores the element, if
the element is finite, i.e. the value of isMinInfinite
is false.

Member functions are as follows:

1) StateMatrixElem() is a constructor without any
argument. In this function, the element is initialized to
minus infinity.

2) StateMatrixElem(v) is a constructor with one
argument v of type integer. The element is initialized
to the argument of the function.

3) ˜StateMatrixElem() is a destructor. This function
does not do anything.

Fig. 8. Class diagram for StateMatrix

8) StateMatrix: This class (cf. Fig. 8) represents the state
matrix of an MPL system. The dimension of state matrix
must be n× n, which will be allocated dynamically. Member
variables are as follows:

1) matrix is a variable of type pointer to pointer to
StateMatrixElem, which is equivalent to a two-
dimensional array of StateMatrixElem. This vari-
able stores entries of the state matrix.

2) dim is an integer variable that stores dimension of the
state matrix. In other words, dimension of the state
matrix is given by dim × dim.

Member functions are as follows:
1) StateMatrix() is a constructor without any argu-

ment. This function does not do anything.
2) StateMatrix(d) is a constructor with one argument

of type integer. This function generates a matrix of size
d × d. The entries are minus infinity.

3) SetDim(d) is a function with one argument of type
integer. This function generates a matrix of size d × d.
The entries are minus infinity.

4) ˜StateMatrix() is a destructor. This function does
not do anything.

B. Difference-Bound Matrices

Fig. 9. Class diagram for DbmInterval

1) DbmInterval: This class (cf. Fig. 9) represents an ele-
ment of a DBM, namely xi − xj ./i,j αi,j (cf. Section II-C).
Member variables are used to characterize such interval:

36 INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND APPLIED MATHEMATICS, VOL. 3, NO. 1, FEBRUARY 2017

1) strictness is a Boolean variable. If the value is true,
then the inequality sign is not strict, i.e. ≤. If the value
is false, then the inequality sign is strict, i.e. <.

2) isPlusInfinite is a Boolean variable. If the value
is true, then the upper bound is +∞ and the inequality
sign is not strict, i.e. the value of strictness is false.
In this case, the value of strictness is ignored. On
the other hand, if the value of isPlusInfinite is
false, then the upper bound is defined as the value of
upperbound and the inequality sign depends on the
value of strictness.

3) upperbound is an integer variable that represents the
upper bound if the upper bound is finite. If the upper
bound is not finite, the value stored in this member
variable is ignored.

Member functions are as follows:

1) DbmInterval() is a constructor without any argu-
ment. In this function, upper bound of the interval is
initialized to +∞.

2) DbmInterval(s,u) is a constructor with two argu-
ments. The first agument s is of type Boolean and the
second argument u is of type integer. In this function,
upper bound of the interval is defined to be finite.
Furthermore, the upper bound is defined to be u and
the strictness is defined to be s.

3) ˜DbmInterval() is a destructor. This function does
not do anything.

4) operator+(di2) is a function that overloads the plus
operator. This function adds this DbmInterval and the
DbmInterval in the argument di2. This function returns
a DbmInterval, which represents result of the addition.

5) operator-(di2) is a function that overloads the mi-
nus operator. This function intersects this DbmInterval
and the DbmInterval in the argument di2. This function
returns a DbmInterval, which represents result of the
intersection.

6) isSubset(di) is a function that checks whether
this DbmInterval is a subset of the DbmInterval in the
argument di. If this DbmInterval is a subset of the
DbmInterval in the argument di, then this function
returns true. Otherwise if this DbmInterval is not a
subset of the DbmInterval in the argument di, then this
function returns false.

Fig. 10. Class diagram for AffineDynamics

2) AffineDynamics: This class (cf. Fig. 10) represents an
affine dynamics generated by an MPL system (2). Member
variables are as follows:

1) indeks (in English: index) is a variable of type pointer
to integer. This variable stores the integer coefficients
g1, . . . , gn.

2) konstanta (in English: constants) is a variable of type
pointer to integer. This variable stores integer constants
A(1, g1), . . . , A(n, gn).

3) dimensi (in English: dimension) is an integer variable.
This variable stores size of the state matrix. Remember
that the state matrix is a square matrix. Thus, we only
need a single integer variable to store its dimension.

Member functions are as follows:

1) AffineDynamics() is a constructor without any
argument. This function does not do anything.

2) AffineDynamics(d) is a constructor with one ar-
gument d of type integer. In this function, member
variables indeks and konstanta are defined as one-
dimensional integer arrays of size d. Furthermore, all
entries of both member variables are initialized to zero.

3) ˜AffineDynamics() is a destructor. This function
does not do anything.

4) setDim(d) is a function with one argument d of
type integer. In this function, member variables indeks
and konstanta are defined as one-dimensional integer
arrays of size d. Furthermore, all entries of both member
variables are initialized to zero.

Fig. 11. Class diagram for DBM

3) DBM: This class (cf. Fig. 11) represents a DBM. Mem-
ber variables are as follows:

1) matriks is a variable of type pointer to pointer of
DbmInterval. In other words, this variable represents
a two-dimensional array of type DbmInterval.

2) dim is an integer variable that represents the size or
dimension of the DBM. The special variable x0 is not
considered when determining the dimension of a DBM.

Member functions are as follows:

1) DBM() is a constructor without any argument. This
function does not do anything.

2) DBM(d) is a constructor with one argument of type
integer. This function creates DBM Rd. Notice that size
of the preceding DBM is d.

3) setdim(d) is a function with one argument of type
integer. This function creates DBM Rd. Notice that size
of the preceding DBM is d.

MUHAMMADUN et al.: DESIGN OF SOFTWARE TOOL FOR FINITE ABSTRACTIONS OF MPL SYSTEMS USING UNIFIED MODELING LANGUAGE 37

4) FloydWarshall() is used to compute the canonical-
form representation of this DBM. Since the canonical-
form representation of a DBM is again a DBM, this
function returns a DBM.

5) operator-(d2) is a function that overloads the mi-
nus operator. This function has one argument of type
DBM. The purpose is to determine the intersection of two
DBM. Since the intersection of two DBM is a DBM, this
function returns a DBM.

6) Complement(sizecomp) is a function to compute
the complement of this DBM. The complement of a
DBM is in general a union of finitely many DBM. This
function has an argument of type address of an integer.
This argument is not used for the input, but this is used
as the output to store the number of DBM that becomes
the complement of this DBM.

7) isEmpty() is a function to check whether this DBM
is empty or not. This function returns a Boolean value.
If this function returns true, then this DBM is empty. If
this function returns false, then this DBM is not empty.

8) image(ad1) is a function to determine the image
of this DBM w.r.t. the affine dynamics defined in the
argument. Since the image of a DBM w.r.t. an affine
dynamics is a DBM, this function returns a DBM.

9) invimage(ad1) is a function to determine the inverse
image of this DBM w.r.t. the affine dynamics defined in
the argument. Since the inverse image of a DBM w.r.t.
an affine dynamics is a DBM, this function returns a
DBM.

C. Abstraction Classes

1) Node: This class (cf. Fig. 12) represents a node in the
partition tree. Member variables are as follows:

1) d is a variable of type DBM. This variable stores the
DBM represented by a node in the partition tree.

2) dipenuhi (in English: satisfied) is a variable of type
pointer to Boolean. In other words, the data type is
an array of Boolean. The size of the array is equal to
the number of atomic propositions. If the i-th atomic
proposition is satisfied, then the i-th element of the array
is true. If the i-th atomic proposition is not satisfied, then
the i-th element of the array is false.

3) ad is a variable of type AffineDynamics. This
variable stores the affine dynamics that are active in the
DBM represented by this node.

4) state is an integer variable that represents the unique
identifier for each leaf node. As such, this variable is
only used for nodes that become leaf.

5) numChild is an integer variable that stores the number
of children of this node.

6) child is a variable of type pointer to node. This
variable will be initialized to a dynamic one-dimensional
array of type node. The number of elements in the array
equals the number of children of this node.

Member functions are as follows:
1) node() is a constructor without any argument. This

function does not do anything.

2) node(d1,dipenuhi1,numAP,lev,ApDbm) is a
constructor to build the AP partition tree. This function
is recursive in the following sense: in this constructor,
we create some objects of type node that will call this
constructor.

3) node(A,d1,ad1,lev) is a constructor to build the
AD partition tree. This function is recursive in the
following sense: in this constructor, we create some
objects of type node that will call this constructor.

4) node(d1,dipenuhi1,numAP,lev,ApDbm,A,
ad1) is a constructor to build the Π0 partition tree.
This function is a combination of the preceding two
constructors. This function is recursive in the following
sense: in this constructor, we create some objects of
type node that will call this constructor.

2) Tree: This class (cf. Fig. 13) is used to represent a
tree, for example AP partition tree, AD partition tree and Π0

partition tree. This class has a single member variable root
of type node. This variable is used to store root of the tree.
This class has a constructor and a destructor. Both functions
do not do anything.

3) AbstractionTree: This class (cf. Fig. 14) is used to store
the abstract transition system. Initially, the partition of the state
space is represented as a tree. Member variables are as follows:

1) numAP is an integer variable that is used to store the
number of atomic propositions.

2) ApDbm is a pointer to DBM. We assume that the set of
states satisfying each atomic proposition is a DBM. This
variable is used to represent the set of states that satisfies
each atomic proposition.

3) ApPartTree is a variable of type tree that is used
to store the AP partition tree.

4) AdPartTree is a variable of type tree that is used
to store the AD partition tree.

5) pi0PartTree is a variable of type tree that is used
to store the Π0 partition tree.

6) A is a variable of type StateMatrix, which is used
to store the state matrix.

7) pi0PartTreeLeaf is a variable that represents a list
of nodes. This variable is used to store the leaf nodes
in the Π0 partition tree.

8) numpi0PartTreeLeaf is an integer variable which
stores the number of leaf nodes in the Π0 partition tree.

9) adj is a two-dimensional matrix, where each entry is a
Boolean variable. This variable is used to represent the
set of transitions in the abstract transition system. If the
entry in i-th row and j-th column is true, then there is a
transition from j-th node to i-th node. If the entry in i-th
row and j-th column is false, then there is no transition
from j-th node to i-th node. This variable is still used
after the refinement phase.

10) numInitStates is an integer variable that represents
the number of DBM that defines the initial states. The
initial states are represented by a union of finitely many
DBM.

11) initStates is a pointer to DBM (or equivalently, an
array of DBM). This variable stores the initial states of

38 INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND APPLIED MATHEMATICS, VOL. 3, NO. 1, FEBRUARY 2017

Fig. 12. Class diagram for Node

Fig. 13. Class diagram for Tree

Fig. 14. Class diagram for AbstractionTree

the concrete transition system, i.e. the MPL system.
12) isInitState is an array of boolean variables, where

the size is the same with the number of abstract states.
This variable represents the set of abstract initial states.
If the i-th element is true, then the i-th abstract state
is an initial state. If the i-th element is false, then the
i-th abstract state is not an initial state.

13) LSCTLf is a variable of type ListStr which stores
the set of CTL specifications.

14) LSLTLf is a variable of type ListStr which stores
the set of LTL specifications.

15) abstractState is an array of node which repre-

sents the set of abstract states. This variable is still used
after the refinement phase.

16) numAbstractState is an integer variable that repre-
sents the number of abstract states. This variable is still
used after the refinement phase.

Member functions are as follows:

1) AbstractionTree() is a constructor without any
argument. This function does not do anything.

2) ˜AbstractionTree() is a destructor. This function
does not do anything.

3) ApPart() is a function to construct the AP par-
tition tree. The result is stored in member variable
ApPartTree.

4) AdPart() is a function to construct the AD par-
tition tree. The result is stored in member variable
AdPartTree.

5) pi0Part() is a function to construct the Π0 partition
tree. Roughly speaking, this function is a combination
of ApPart() and AdPart(). The result is stored in
member variable pi0PartTree.

6) Transition() is a function to compute the set of
transitions. In order to minimize the memory usage, this
function is not implemented in a recursive manner. This
function uses the Π0 partition that is stored as a tree, i.e.
member variable pi0PartTree. The result is stored in
member variable adj. Furthermore, this function also
initializes member variable pi0PartTreeLeaf.

7) determineInitState() is a function to determine
the set of initial states over the abstract transition system.
This function uses member variable abstractState.
Since member variable abstractState is initialized
in member function Refinement(upperbound),
this function has to be called after execution of the
refinement function. The result is stored in member
variables numInitStates and initStates.

8) Refinement(upperbound) is used to refine the
abstract transition system. In general, this procedure
does not necessarily terminate in a finite time. Thus,
we define one argument upperbound which represents
the maximum number of abstract states (for the stopping
criterion of the procedure). This function uses member
variable pi0PartTreeLeaf. Since the member vari-
able is initialized in member function Transition(),

MUHAMMADUN et al.: DESIGN OF SOFTWARE TOOL FOR FINITE ABSTRACTIONS OF MPL SYSTEMS USING UNIFIED MODELING LANGUAGE 39

then this function can be executed after the execu-
tion of the function to compute transitions. Further-
more, in this function, we initialize member variables
abstractState and numAbstractState.

9) Ts2nusmv() is a function to generate a NuSMV
language stored in a file from the abstract
transition system. This function uses member
variables numAbstractState, abstractState,
numInitStates, initStates and adj. Thus,
this function can be executed after the functions
Transition(), Refinement(upperbound) and
determineInitState() have been executed.

REFERENCES

[1] F. Baccelli, G. Cohen, G. Olsder, and J.-P. Quadrat, Synchronization
and Linearity, An Algebra for Discrete Event Systems. John Wiley and
Sons, 1992.

[2] B. Heidergott, G. Olsder, and J. van der Woude, Max Plus at Work–
Modeling and Analysis of Synchronized Systems: A Course on Max-Plus
Algebra and Its Applications. Princeton University Press, 2006.

[3] B. Roset, H. Nijmeijer, J. van Eekelen, E. Lefeber, and J. Rooda, “Event
driven manufacturing systems as time domain control systems,” in Proc.
44th IEEE Conf. Decision and Control and European Control Conf.
(CDC-ECC’05), Dec. 2005, pp. 446–451.

[4] J. van Eekelen, E. Lefeber, and J. Rooda, “Coupling event domain and
time domain models of manufacturing systems,” in Proc. 45th IEEE
Conf. Decision and Control (CDC’06), Dec. 2006, pp. 6068–6073.

[5] C. A. Brackley, D. S. Broomhead, M. C. Romano, and M. Thiel, “A max-
plus model of ribosome dynamics during mRNA translation,” Journal
of Theoretical Biology, vol. 303, no. 0, pp. 128–140, Jun. 2012.

[6] S. Gaubert and R. Katz, “Reachability and invariance problems in max-
plus algebra,” in Positive Systems, ser. Lecture Notes in Control and
Information Science, L. Benvenuti, A. De Santis, and L. Farina, Eds.
Springer, Heidelberg, Apr. 2003, vol. 294, ch. 4, pp. 15–22.

[7] R. D. Katz, “Max-plus (A,B)-invariant spaces and control of timed
discrete-event systems,” IEEE Trans. Autom. Control, vol. 52, no. 2, pp.
229–241, Feb. 2007.

[8] B. De Schutter, “On the ultimate behavior of the sequence of consecutive
powers of a matrix in the max-plus algebra,” Linear Algebra and its
Applications, vol. 307, no. 1-3, pp. 103–117, Mar. 2000.

[9] D. Adzkiya, B. De Schutter, and A. Abate, “Finite abstractions of max-
plus-linear systems,” IEEE Trans. Autom. Control, vol. 58, no. 12, pp.
3039–3053, Dec. 2013.

[10] C. Baier and J.-P. Katoen, Principles of Model Checking. The MIT
Press, 2008.

[11] D. Adzkiya and A. Abate, “VeriSiMPL: Verification via biSimulations
of MPL models,” in Proc. 10th Int. Conf. Quantitative Evaluation
of Systems (QEST’13), ser. Lecture Notes in Computer Science,
K. Joshi, M. Siegle, M. Stoelinga, and P. D’Argenio, Eds., vol. 8054.
Springer, Heidelberg, Sep. 2013, pp. 253–256. [Online]. Available:
http://sourceforge.net/projects/verisimpl/

[12] D. Adzkiya, Y. Zhang, and A. Abate, “VeriSiMPL 2: An open-source
software for the verification of max-plus-linear systems,” Discrete Event
Dynamic Systems, vol. 26, no. 1, pp. 109–145, 2016.

[13] W. Heemels, B. De Schutter, and A. Bemporad, “On the equivalence of
classes of hybrid dynamical models,” in Proc. 40th IEEE Conf. Decision
and Control, vol. 1, 2001, pp. 364–369.

[14] D. Dill, “Timing assumptions and verification of finite-state concurrent
systems,” in Automatic Verification Methods for Finite State Systems,
ser. Lecture Notes in Computer Science, J. Sifakis, Ed. Springer,
Heidelberg, 1990, vol. 407, ch. 17, pp. 197–212.

